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The somatic sensory system responds to stimuli of distinct modalities, including touch, pain, itch, and temperature 
sensitivity. In the past century, great progress has been made in understanding the coding of these sensory modali-
ties. From this work, two major features have emerged. First, there are specific neuronal circuits or labeled lines 
transmitting specific sensory information from the skin to the brain. Second, the generation of specific sensations 
often involves crosstalk among distinct labeled lines. These features suggest that population coding is the mecha-
nism underlying somatic sensation.

Introduction
There is a long debate about how somatic sensations, including 
touch, pain, itch, and temperature sensitivity, are encoded by the 
nervous system. Major competing views are specificity theory and 
pattern theory (1–5). The specificity theory suggests that each sen-
sory modality is processed along a fixed, direct-line communication 
system from the skin to the brain. The existence of such specific 
labeled lines was suggested first by Blix, Goldscheider, and Don-
aldson from 1882 to 1885 and later by von Frey (reviewed in refs. 4 
and 6). They found that there are specific spots in the human skin 
whose activation correlates with a specific sensation: cool, warm, 
touch, pain, or itch. Electrophysiological recordings then demon-
strated the existence of primary sensory fibers and spinal relay neu-
rons that respond to specific stimuli, such as cold, warm, pruritic, 
and/or noxious stimuli (4, 5, 7–11). Modern molecular, genetic, 
and behavioral studies have subsequently identified sensory chan-
nels and receptors that are specialized to detect specific sensory 
stimuli (12–14). Theories consistent with pattern theory, such as 
gate control (1, 15), argue against the existence of a specific pain 
labeled line and instead propose that pain sensation is generated by 
a summation of inputs from various primary sensory afferents and 
is subjected to modulation by descending inputs from the brain. 
Several recent reviews have pointed out that the coding of somatic 
sensation is involved in both specificity and complex mechanisms 
dependent on particular patterns of stimulation: there is no doubt 
about the existence of specific sensory labeled lines, but crosstalk 
among these lines generates and shapes somatosensory perception 
(2, 4, 10, 11, 16, 17). This synergistic view is referred to as popula-
tion coding of somatic sensations (16, 18), which is essentially a 
modification of the original pattern theory. In this Review, we dis-
cuss new evidence supporting population coding; specifically, the 
coding of thermal sensation, and of pain versus itch.

Population coding of cold, warm, and thermal pain: 
insight from human studies
Soon after the discovery of cold and warm spots in the skin that 
suggested the existence of specific labeled lines, Thunberg and 
Alrutz independently discovered the “synthetic heat” phenomenon 
in 1896 (4). Thunberg found that stimulation of the skin with alter-
nating cold and warm tubing (thermal grill) led to hot or burning 

sensation. Alrutz used a different method to concurrently activate 
both cold and warm spots, resulting in a similar paradoxical heat 
sensation (4, 6, 19). Based on these observations, Alrutz proposed a 
pattern theory of thermoreception by stating that “heat is coded by 
a synthesis of warm fiber and cold fiber stimulation” (4).

From 1975 to 1990, Mackenzie and several other investigators 
provided a key insight into the neural basis of thermal reception 
and perception (20–23). They found that a blockage of myelinated 
fibers (A-fibers) by ischemia or compression allows cold stimuli 
to activate non-myelinated C-fibers and to evoke heat or burning 
sensations. These findings suggest that (a) A-fibers responding to 
innocuous cold are necessary for cold sensation and (b) activation 
of “nociceptive” C-fibers by innocuous cold is able to evoke heat 
or burning sensation, but this sensation is normally masked by the 
activation of cold-sensitive A-fibers.

Craig and Bushnell then found two types of cold-sensitive neu-
rons in the dorsal horn of the spinal cord (24). One responds spe-
cifically to cold temperatures, and such cells are referred to as COLD 
neurons. The other responds to heat, pinch, and cold, and these 
multimodal cells are referred to as HPC neurons. Interestingly, 
warming can suppress the activity of COLD, but not HPC, neurons 
(24). Together with the findings by Mackenzie and others, these 
observations suggest that the thermal grill illusion results from an 
antagonistic relationship between different labeled lines. First, cold-
sensitive A-fibers may connect with COLD neurons to evoke cold 
sensation (a cold labeled line), and activation of this labeled line 
will mask pain sensation evoked by the activation of cold-sensitive  
C-fibers (a heat or pain labeled line). A concurrent activation of warm 
fibers (a warm labeled line) on adjacent skin areas will centrally block 
the neural pathway activated by cold-sensitive A-fibers; as a result, 
cold-sensitive C-fibers are able to activate the pain-labeled line and 
create (paradoxically) a heat sensation (Figure 1). Indeed, imaging 
experiments by functional magnetic resonance imaging in humans 
show that the thermal grill is able to activate the anterior cingulate 
cortex that is normally activated by painful stimuli, whereas neither 
innocuous cold nor warm alone can activate this brain center (25).

Subsequent electrophysiological characterization of the thermal 
responsiveness of primary sensory afferents allowed Campero et al. 
to propose a more concrete population coding theory in explaining 
thermoreception and perception (Figure 2 and ref. 18 and refer-
ences therein). They focused on Aδ-cold fibers and thermosensi-
tive C-fibers. Not included in the analysis was the first phase of 
pain, which is mediated by high-threshold myelinated nociceptors 
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(8, 26). Aδ-cold fibers represent myelinated fibers that respond 
to innocuous cold temperatures but are inactivated by noxious 
cold (<14°C). Thermosensitive C-fibers in humans can be divided  
into multiple subtypes (ref. 18 and references therein). CMHC 
polymodal nociceptors respond to mechanical, heat, and noxious 
cold stimuli. C2 neurons belong to bimodal thermoreceptors that 
respond to innocuous and noxious cold (0–30°C), but also to warm 
and/or hot temperatures (38–48°C). C-warm neurons respond to 
warm temperatures and are inactivated by noxious cold and heat 
(8, 18). CH neurons respond specifically to noxious heat, and CMH 
neurons respond to both noxious mechanical stimuli and noxious 
heat. Each of these C-fiber subtypes could represent a mixed popu-
lation due to distinct electrophysical properties and/or differential 
expression of ion channels and receptors. For example, different 
CMH fibers show distinct thresholds to radiant heat (8) and can 
be divided into rapid-adapting and slow-adapting subtypes (27). 
Based on the features of these thermosensitive C-fibers and Aδ-cold 
fibers, Campero et al. proposed the population coding hypothesis 
for thermoreception and perception diagrammed in Figure 2 (18).

According to this model, when the skin is stimulated by noxious 
cold temperatures, both C2 fibers and CMHC fibers will be activated,  
leading to pain sensation (Figure 2B). Since cold stimuli evoke a 
hot or burning pain sensation following a blockage of A-fibers 
(20–23), the cold quality of cold pain may be either encoded by an 
unknown population of myelinated nociceptors that respond to 
noxious cold or encoded by a transient activation of Aδ-cold fibers 
(Figure 2B). Inactivation of Aδ-cold fibers at noxious cold tem-
peratures (18) also removes cold-induced pain inhibition, which in 
turn allows more C2 fibers to activate the pain pathway.

At innocuous cool temperatures (>14°C), both C2 and Aδ-cold 
fibers will be active. However, the activation of Aδ-cold fibers can 
dominantly inhibit the neuronal pathway activated by the C2 
fibers in higher brain centers, such as thalamic nuclei (28), lead-
ing to an innocuous cool sensation (Figure 2C). At warm tem-
peratures (30–38°C), only C-warm fibers will be activated, leading 
to an innocuous warm sensation (Figure 2D). As temperatures 
increase (>38°C), more and more C2 fibers will be activated and 
become dominant over C-warm fiber activity, leading to hot or 
burning sensation. Finally when temperatures reach noxious 
ranges, C2, CH, CMH, and possibly CMHC fibers will all be acti-

vated, whereas C-warm fiber activity will be inactivated, leading to 
a burning pain sensation (Figure 2F).

This population coding hypothesis can nicely explain several 
thermal paradoxes. For example, synthetic heat sensation created 
by concurrent activation of both cold and warm spots in the skin 
(thermal grill) can be explained by a blockage of the Aδ-cold fiber 
input by C-warm fibers, which in turn allows “unmasked” C2 fibers 
to evoke a burning sensation, as discussed above (Figure 2E). Green 
and colleagues reported that in some human subjects, innocuous 
cold stimuli alone are able to evoke a burning sensation, a phenom-
enon referred to “innocuous cold nociception,” or ICN (4). It is pos-
sible that in those human subjects, the activity of the Aδ-cold fibers 
might not be strong enough to mask all of C2 fiber activity.

The synthetic heat created by thermal grill is a form of spatial 
summation, following concurrent activation of cold and warm 
spots in the skin. Temporal summation of different thermal stim-
uli can also lead to paradoxical thermal sensation. For example, 
preheating the skin will allow cold stimuli to evoke paradoxical 
warmth or heat (29, 30). Other studies show that noxious stimuli,  
such as capsaicin injection in the skin, are able to suppress an 
inhibitory pathway in the spinal cord, thereby leading to central 
sensitization and the development of thermal and mechanical allo-
dynia (31). Thus, skin preheating might block the inhibitory path-
way normally activated by Aδ-cold fibers, which might in turn allow 
innocuous cold to activate C2 fibers and evoke heat sensation.

It should be noted that the C-fibers and Aδ-cold fibers described 
in Figure 2 cannot entirely explain other paradoxical thermal sen-
sations. For example, cold sensation can be evoked following the 
stimulation of a subset of cold spots with noxious heat (32), sug-
gesting the existence of additional cold-sensing fibers that respond 
to both cold and heat stimuli. However, these fibers must connect 
with neuronal pathways involved in cold sensation, rather than 
heat/burning pain sensations.

Molecular basis of thermoreception
One great achievement in sensory biology was the identification of 
ion channels and receptors that respond to specific sensory stimuli 
(13, 14). In particular, the transient receptor potential (TRP) family 
of ion channels plays a critical role in thermoreception, as extensive-
ly reviewed by Basbaum, Julius, et al. (14). Here, we discuss how the 
expression and function of various TRP channels could be correlat-
ed with the thermal responsiveness of C-fibers and Aδ-cold fibers.

TRPM8 is a cold sensor, with an activation threshold in the 
innocuous cold range (25~28°C), defined in heterologous sys-
tems (33, 34). This threshold is lower than that of many human 
C2 fibers (> 30°C) (18). However, in vivo cold sensitivity of sensory 
neurons can be modulated by other factors, such as the expres-
sion of two potassium channels, TREK1 and TRAAK (35–37). 
Genetic studies have established an essential role of TRPM8 in 
sensing innocuous cold (38–41). For example, mice lacking Trpm8 
fail to distinguish cold versus warm chambers (38–41). Thus, the 
responsiveness to innocuous cold by Aδ-cold fibers is most likely 
encoded by the expression of TRPM8. Consistent with this finding,  
14%–26% of TRPM8-expressing neurons in DRG and trigeminal 
ganglia are also A-fiber neurons (42), and cold responsiveness by 
Aδ-fibers and the cold-induced analgesic effect are virtually abol-
ished in Trpm8 mutant mice (39). TRPM8 is also partially involved 
in sensing noxious cold (38–41), suggesting that TRPM8 expres-
sion may confer C2-like fibers the ability to respond to both innoc-
uous and noxious cold.

Figure 1
Crosstalk among warm, cold, and pain labeled lines. C-warm fibers 
mediate a neuronal pathway or labeled line for warmth sensation; 
A-cold fibers are part of the labeled line for innocuous cold sensa-
tion; and C-cold fibers respond to innocuous cold but evoke hot or 
burning pain sensation. The activity of C-cold fibers can be centrally 
inhibited by the activation of A-cold fibers, and the activity of A-cold 
fibers can be masked by the activation of C-warm fibers. Simulta-
neous application of cold and warm stimuli by thermal grill allows  
C-cold fibers to activate the hot/burning labeled line, thereby leading 
to the thermal grill illusion.
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TRPA1 was initially proposed to sense noxious, but not innocu-
ous, cold (43). However, the role of TRPA1 in sensing cold tem-
peratures in somatic sensory neurons is still a matter of debate 
(9, 41, 44–47). Karashima et al. recently reported that TRPA1-
expressing neurons in the trigeminal ganglia are able to sense 
noxious cold (46), whereas several other studies failed to show 
cold sensitivity of these neurons (48, 49). This discrepancy might 
be reconciled by slow and weak activation of TRPA1 by cold; as a 
result, a short period of cold stimuli might fail to reveal TRPA1-
mediated cold sensitivity (46, 50). Notably, cold sensitivity is still 
detected in a subset of DRG neurons from mice that lack both 
Trpa1 and Trpm8, suggesting the existence of other cold-sensing 
channels or mechanisms (41) and also consistent with earlier 
electrophysiological studies (51). It should be noted that even if 
TRPA1-expressing neurons respond to noxious cold, injection of 
TRPA1 agonists would be expected to evoke burning pain, rather 
than cold pain, because TRPM8-dependent Aδ-cold fibers will not 
be activated, a prediction supported by human psychophysical 
studies (52). Under this hypothetical but still controversial condi-
tion, TRPA1 expression might confer CMHC neurons the ability 
to sense noxious, but not innocuous, cold.

TRPV1 responds to noxious heat, acid, toxins, and capsaicin (14). 
In mice, TRPV1 is preferentially associated with CH fibers and is 
necessary for these fibers to respond to noxious heat (53). Which 

molecules could be responsible for the responsiveness of C2 fibers 
to warmth/heat at 38–48°C? A portion of TRPM8-expressing neu-
rons coexpress TRPV1 (42, 54), and up to 50% of DRG neurons 
that respond to menthol (an agonist of TRPM8) also respond to 
capsaicin (an agonist of TRPV1) (33, 55, 56). Furthermore, a group 
of DRG neurons express a very high level of TRPV1 and respond 
to warm/heat temperatures at 38–48°C, analogous to the thresh-
olds for C2 fibers (57). Thus, it is possible that the coexpression of 
TRPM8 and TRPV1 might confer C2 fibers the capacity to respond 
to both innocuous cold and to warmth/heat. TRPV3 is another 
channel responding to warm and hot temperatures (58–60). Inter-
estingly, TRPV3 is expressed in both DRG neurons and keratino-
cytes in humans, but only in keratinocytes in mice (58). In response 
to warmth and heat, keratinocytes may release chemicals such as 
UTP and ATP, which in turn activate P2X and P2Y receptors in 
skin nerve terminals (58–61). For example, P2Y2 is a receptor of 
UTP, and its expression in mouse DRG neurons is required for 
proper heat sensation (62). Thus, it is possible that TRPV3 expres-
sion in DRG neurons and/or in keratinocytes could be directly or 
indirectly linked to C2 fibers in sensing warmth/heat.

In rats and humans, CMH neurons respond to capsaicin, sug-
gesting that expression of TRPV1 in these neurons could con-
fer the ability to respond to noxious heat (63). The situation is, 
however, quite different in mice, in which a large subset of CMH 
neurons does not respond to capsaicin due to a lack of TRPV1 
expression (53). Most CMH neurons in mice can be marked by the 
expression of the G protein–coupled receptor Mrgprd, and these 
neurons coexpressed P2X3 (53, 64–66). It was proposed that heat 
responsiveness of some CMH neurons in mice might be indirectly 
mediated by chemicals released from keratinocytes (60).

By summarizing the expression and functions of thermosensitive 
TRP channels, we can draw the following conclusions. First, a sen-
sory receptor (such as TRPM8) that responds to a specific stimulus 
(innocuous cold) can be associated with distinct sensory modalities 
(such as Aδ-cold fibers and C2 pain fibers). Second, a given sensory 
fiber (such as a C2 fiber) can express multiple receptors (TRPM8 
and TRPV1); as a result, this fiber becomes polymodal (responding 
to both innocuous cold and noxious heat), even though activation 
of this fiber is invariably associated with a specific somatic sensa-
tion (burning pain in the case of C2 fibers). Thus, the responsiveness 
of an isolated sensory fiber to a particular stimulus cannot predict 
what kind of sensory modality it is associated with. The fact that a 
given stimulus can often activate multiple labeled lines also suggests 
that the emergence of a specific somatic sensation is likely achieved 

Figure 2
Population coding of thermal perceptions. The model is modified from 
ref. 18. (A) Functions and interaction of thermosensitive fibers. Note 
that CH, CMH, C2, and CMHC fibers all connect with neural path-
ways involved with hot or burning pain sensation. Activation of Aδ-cold 
fibers is able to suppress the sense of hot or burning pain. Aδ-cold fiber 
activity can be masked by the activation of C-warm fibers. (B–F) Fiber 
activity (within each rectangle) when a specific sensation (above each 
rectangle) is evoked. “on” means that the fiber is activated, and “off” 
means that the fiber is silent or inactivated. CH, C-fibers responding 
only to noxious heat; CMH, C-fibers responding to noxious mechani-
cal stimuli and heat; C2, C-fibers responding cold and warmth/heat; 
CMHC, C-fibers responding to noxious mechanical stimuli, heat, and 
noxious cold; Aδ-cold, A-fibers responding to innocuous cold; C-warm, 
C-fibers responding to warm temperatures; Aδ-MH, A-type fibers 
responding to mechanical stimuli and heat.
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through crosstalk among different sensory labeled lines, as we have 
discussed above (Figures 1 and 2).

The coding of pain versus itch
Itch and pain represent two distinct sensations and evoke withdraw-
al and scratching responses, respectively (11, 67). A series of studies 
have supported the existence of specific labeled lines in processing 
itch. Von Frey first recognized specific skin spots whose activation 
evokes itch (68). Using the microneurographic technique, Schmelz 
et al. first identified histamine-sensitive mechano-insensitive pri-
mary afferents whose activation is correlated with itch sensation 
in humans (69). More recently, it was found that sensory neurons 
expressing the GPCR MrgprA3, representing 4%–5% of dorsal root 
ganglion (DRG) neurons (70), are required to sense itch evoked by 
chloroquine, but are dispensable for pain (71). Furthermore, cell 
ablation experiments in mice show that spinal cord neurons express-
ing the gastrin-releasing peptide receptor (GRPR) are required to 
sense itch, but not pain, strongly suggesting separate neuronal path-
ways or labeled lines in processing itch versus pain (72, 73).

Other studies, however, show that itch-sensing neurons (pru-
riceptors) can respond to pain-inducing (algogenic) stimuli. For 
example, pruriceptors that respond to histamine, serotonin, tryp-
sin, and chloroquine also respond to capsaicin (74–80). In other 
words, capsaicin-responsive DRG neurons can be divided into 
pain-sensing and itch-sensing subpopulations. Similarly, two pru-
ritic agents, cowhage spicules and agonists of the proteinase-acti-
vated receptor 2 (PAR-2), are able to activate most CMH polymodal 
nociceptors, which respond to heat and noxious mechanical stim-
uli (81, 82). These findings pose a dilemma in understanding the 
coding of pain versus itch. For example, subcutaneous injection 
of capsaicin evokes pain, even though both pain-sensing and itch-
sensing nociceptors are supposed to be activated (75–77, 79, 80). 
To explain this dilemma, several theories have been proposed.

The “spatial contrast” theory proposes that itch is encoded when 
a minority of nociceptive fibers are activated in a receptive field, and 
pain is encoded when a large number of nociceptor fibers are activated 
(11, 82–84). This theory argues that pain and itch can be coded in the 
absence of pain-specific and itch-specific labeled lines (82). However, 
this theory appears to conflict with increasing evidence supporting the 
existence of itch-specific primary and relay sensory neurons (69, 71–73, 
85). For example, it is very difficult to explain why GRPR-expressing 
spinal neurons are dedicated to the transmission of itch (73).

Carstens and colleagues proposed the population coding hypoth-
esis to account for the apparent contradiction (16, 86), which is 
essentially the same as the selectivity hypothesis of itch (17, 87). 
This hypothesis highlights two features. First, itch and pain are 
processed along distinct neural circuits or labeled lines, as support-
ed by the existence of itch-specific primary and relay neurons (69, 
71, 73). Second, pruriceptors can respond to an allogeneic stimu-
lus, but activation of a larger number of pain-specific fibers can 
dominantly mask itch (16, 86). Indeed, an antagonistic relationship 
between pain and itch has long been recognized (11, 88–91). Over 
80 years ago, Lewis found that itch evoked by histamine injection 
can be suppressed by electric stimuli (88). A range of other painful 
stimuli can also suppress itch (89, 92). Mechanistically, scratching, 
a painful stimulus, can directly silence the firing of histamine-sen-
sitive neurons in the spinal cord (91). Conversely, an inhibition of 
pain can enhance histamine-induced itch (90), and itch is a com-
mon side effect of analgesic treatment with opioids (11).

Could the population coding hypothesis explain the following 
paradox: while subcutaneous capsaicin injection evokes “pure” 
pain, delivery of capsaicin into the skin epidermis by a single cow-
hage spicule evokes itch and a nociceptive sensation (79)? As dis-
cussed above, capsaicin-responsive neurons can be divided into 
pain-sensing and itch-sensing subpopulations (74–80). It was 
accordingly postulated that capsaicin-responsive fibers in the skin 
epidermis might be enriched for itch-sensing fibers, whereas those 
in the dermis or deeper tissues might be enriched for pain-sens-
ing fibers (79). Indeed, Mrgpra3-expressing neurons respond to 
capsaicin and histamine and are involved in itch evoked by chlo-
roquine (71); moreover, genetic axonal marking shows that neu-
rons expressing the Mrgpr family of GPCRs tend to project into the 
skin epidermis (65, 93). Thus, according to the population coding 
hypothesis, epidermal capsaicin delivery may preferentially activate 
pruriceptors and/or only generate a weak pain or nociceptive sensa-
tion that is insufficient to mask itch. However, it has not yet been 
tested whether itch evoked by epidermal capsaicin delivery could be 
indirectly caused by an activation of TRPV1 in keratinocytes (94).

There is an unsolved dilemma in explaining itch evoked by cow-
hage or by PAR-2 agonists. These two pruritic agents are able to 
evoke histamine-independent itch (95–98) but surprisingly activate 
a majority of CMH polymodal nociceptors (81, 82). In fact, PAR-2 
is expressed in nearly 90% of TRPV1-expressing neurons (99, 100), 
and PAR-2 agonists can sensitize TRPV1 and cause inflammatory 
hyperalgesia (99–102). How then could cowhage and PAR-2 agonists 
evoke itch? Several possibilities have been suggested (81, 82). First, 
in primates, cowhage spicules evoke bursting discharge of CMH 
nociceptors, whereas noxious heat at 53°C induces nonbursting 
discharge (27, 81). Accordingly, it was postulated that pain and itch 
might be encoded by distinct firing patterns of C-fibers (81). How-
ever, this theory was disputed by human studies showing no correla-
tion between firing patterns and the senses of pain versus itch (82, 
103). Second, CMH neurons can be divided into quickly adapting 
(QC) and slowly adapting (SC) subtypes (27). In primates, QC fibers 
have a more robust cowhage response than SC fibers, raising the 
possibility that QC fibers might be enriched for pruriceptors, where-
as SC fibers might be enriched for pain-sensing nociceptors (81). In 
other words, itch sensation emerges following strong activation of 
QC itch fibers and weak activation of SC pain fibers, which is not 
inconsistent with the population coding hypothesis. Third, cowhage 
itch may be mediated by a coactivation of A-fibers and CMH fibers 
(81, 82, 92). Interestingly, while activation of CMH fibers by nox-

Figure 3
Population coding of pain versus itch. Pain and itch are processed 
along two different labeled lines. Activation of pain-sensing neurons 
may activate Bhlhb5-expressing inhibitory neurons in the spinal cord, 
which in turn suppress itch-sensing GRPR-expressing spinal neurons.
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ious heat generates pain, mechanical stimuli at thresholds that can 
activate CMH fibers fail to generate pain, likely due to a concurrent 
activation of low-threshold Aβ-fibers that can inhibit pain (104). By 
analogy, itch might emerge following an activation of itch-sensing  
A-fibers that might centrally mask pain-sensing CMH fiber activity, 
which is further analogous to cold sensation following concurrent 
activation of Aδ-cold fibers and C2 pain fibers (Figures 1 and 2).  
Such crosstalk among different labeled lines would again be consis-
tent with the population coding hypothesis.

Thus, a summary of the current literature appears to support the 
population coding hypothesis that emphasizes both the existence 
of itch-specific and pain-specific neural circuits and an antagonis-
tic relationship between pain and itch. How could pain suppress 
itch? It was postulated that pain fibers may connect with spinal 
inhibitory neurons to mask itch (Figure 3). For example, intra-
dermal capsaicin injection, which causes pain, is able to activate a 
large subset of inhibitory neurons in the dorsal horn of the spinal 
cord (31, 105). A more recent study shows that a group of spinal 
cord inhibitory neurons, whose development is dependent on a 
transcription factor called Bhlhb5, is involved in itch suppression 
(106). Developmental impairment of these inhibitory neurons 
leads to the sensitization of multiple itch pathways and the devel-
opment of excessive scratching and severe skin lesions (106). It is 
attractive to postulate that pain fibers may connect with Bhlhb5-
dependent inhibitory neurons to suppress itch (Figure 3).

Concluding remarks
The coding of somatic sensory information might be best 
explained by the population coding hypothesis. This hypothesis 

is composed of two components. First, the senses of pain, itch, 
and temperature are in part selectively processed along specific 
labeled lines. Second, these labeled lines are not independent. 
Rather, crosstalk (often antagonistic interaction) between dis-
tinct labeled lines in the spinal cord or in the brain is involved in 
the emergence of a specific somatic sensation, particularly when 
multiple labeled lines respond to the same stimulus. A critical fea-
ture of this hypothesis is that responsiveness of individual nerve 
fibers to a particular sensory stimulus does not necessarily cor-
relate with the perception of that stimulus. For example, cold-
sensitive C2 pain fibers are involved in burning pain sensation, 
and heat-sensitive fibers can be involved in sensing cold or itch. 
Clearly, one frontier in sensory biology studies will be to illustrate 
how exactly these sensory labeled lines meet and talk in the dorsal 
spinal cord and in the brain.
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