Supplemental information

Inherited GINS1 deficiency underlies

growth retardation along with neutropenia and NK cell deficiency

Julien Cottineau, Molly C. Kottemann, Francis P. Lach, Young-Hoon Kang,

Frédéric Vély, Elissa K. Deenick, Tomi Lazarov, Laure Gineau, Yi Wang,

Andrea Farina, Marie Chansel, Lazaro Lorenzo, Christelle Piperoglou, Cindy S. Ma,

Patrick Nitschke, Aziz Belkadi, Yuval Itan, Bertrand Boisson, Fabienne Jabot-Hanin,

Capucine Picard, Jacinta Bustamante, Céline Eidenschenk, Soraya Boucherit,

Nathalie Aladjidi, Didier Lacombe, Pascal Barat, Waseem Qasim, Jane A. Hurst,

Andrew J. Pollard, Holm H. Uhlig, Claire Fieschi, Jean Michon,

Vladimir P. Bermudez, Laurent Abel, Jean-Pierre de Villartay, Frédéric Geissmann, Stuart G. Tangye, Jerard Hurwitz, Eric Vivier,

Jean-Laurent Casanova[@], Agata Smogorzewska, Emmanuelle Jouanguy

(a) Corresponding author

Jean-Laurent Casanova Laboratory of Human Genetics of Infectious Diseases Rockefeller University 1230 York avenue, New York, NY, 10065 Tel : +1-212-327-7332 Fax : +1-212-327-7330

	-					
Patient	P1 (died <u>at 18 mo)</u>	P2 (17y)	Р3 <u>(</u> 7у)	Р4 (29у)	Р5 (18у)	
Intrauterine growth retardation (birth)	Weight – 3,5 SD Height – 4 SD	Weight – 3,5 SD Height – 3,5 SD	Weight – 6,5 SD Height – 6,5 SD	Weight – 2,5 SD Height – 2 SD	Weight – 3,5 SD Height – 3,5 SD	
Extrauterine growth retardation	Weight – 3,5 SD Height – 4 SD	Weight – 2,5 SD Height – 2 SD	Weight – 6 SD Height – 6 SD	No	Weight – 3 SD Height – 4 SD	
Facial dysmorphy	Yes	Yes	Yes (with some preaging features)	Yes, mild	Yes, mild	
Chest infection	Yes (*)	Yes (*)	Adenovirus RSV	Yes (*)	Aspergillus nidulans Streptococcus agalactiae	
Digestive infection	<i>Enterobacter cloacae</i> Other (*)	Rotavirus <i>Clostridium</i> spp.	Rotavirus	Yes (*)	Enterococcus faecalis Escherichia coli Candida glabrata Candida albicans Acinetobacter lowfii Pseudomonas aeruginosa	
Other viral infections	CMV	No	CMV VZV	VZV HSV	VZV Flu	
Other bacterial infections	Enterobacter cloacae	Streptococcus spp. Clostridium spp.	ND	<i>Staphylococcus</i> spp.	Enterobacter cloacae Escherichia coli Pseudomonas Staphylococcus hominis	
Lympho- adenopathies	Yes	Yes	Yes	Yes	No	
Others clinical manifestations	Eczema	Eczema GH treatment (4y – 12y) Osteosarcoma + Chemotherapy (12y)	Protein loosing enteropathy Hypothyroidism	Dry skin - Ichtyosis Psoriatic scalp Iesion (14 y)	Eczema GH treatment (3 - 4y) Glaucoma (5y-18y) G-CSF treatment (13y – 18y) AIHA (IgG+C3D) (9y, 10y, 14y, 17y)	
Prophylactic treatment	No	Cotrimoxazole (3mo to 6y)	Cotrimoxazole (0 to 6mo) Azithromycin Immunoglobulins	Cotrimoxazole (15y to 17y, 18y to 24y)	Cotrimoxazole (3y – 18y) Immunoglobulins (7y – 18y)	

Supplemental Table 1. Summary of the clinical phenotype of each patient in terms of developmental phenotype, infections, and treatments. (*) undetermined infectious etiology.

Patient Stimulation	P1	P2			P3	P4			P5		
Age	18m	1y	15y	16y	4y	9y	15y	17y	9y	11y	13y
PHA (normal range >50) cpm 10 ³	85	135	28	48	ND	87,7	106,6	46,5	26	68,5	21,5
OKT3 (50ng/ml) (normal range >30) cpm 10 ³	ND	ND	13	ND	ND	ND	ND	ND	50,5	ND	ND
Beads anti-CD3/CD28 + IL2	ND	ND	ND	ND	0	ND	ND	ND	ND	ND	ND
Candidin (normal range >10) cpm 10 ³	1	10	0,67	0,4	ND	6	4,7	0,2	5,3	7	13
Tuberculin (normal range >10) cpm 10 ³	ND	ND	ND	0,8	ND	2	ND	ND	6,8	ND	ND
Tetanus (normal range >10) cpm 10 ³	2	15	5	9	ND	53	16	7,1	6,3	1,4	2,45

Supplemental Table 2. T lymphocytes proliferation of each patient.

Patient		P2				P3		P4				P5
Experiment		1	2	3	4	1	2	1	2	3	4	1
Lymphocytes	Cells per µl	1253	1297	1558	1077	1053	688	1105	1018	1070	879	360
Total NK cells	% among lymphocytes	0.1	0.2	0.2	0.2	0.7	0.3	0.1	0.2	0.1	0.1	0.1
	Cells per µl	1	3	3	2	7	2	1	2	1	1	0.4
CD56 ^{bright} NK cells	% among NK cells	0	3	10	NA	29	13	27	25	30	NA	20
CD56 ^{dim} NK cells	% among NK cells	100	97	90	NA	71	87	73	75	70	NA	80

Supplemental Table 3. Count and percentage of total NK, CD56^{bright}, CD56^{dim} cells of each patient.

	P1	P2	P3	P4	P5
Single/Paired-end	Paired-end	Paired-end	Paired-end	Paired-end	Paired-end
Bait-set	50Mb	50Mb	71Mb	71Mb	71Mb
Total reads	30893815	34310743	101158606	67204180	76147288
% Mapped	0,9169	0,9343	0,9884	0,9898	0,9912
Mean coverage	21,3426	21,4846	89,21	63,08	69,3
Target bases covered by > 2X	91,732	94,146	99,9	99,7	99,8
Target bases covered by > 5X	79,52	82,502	99,4	99	99,2
Target bases covered by > 10X	65,036	68,16	98	96,8	97,2
Target bases covered by > 20X	42,032	43,594	92,8	88,6	89,8
Target bases covered by > 30X	25,56	25,702	85,2	77,5	79,7

Supplemental Table 4. Exome sequencing data. Whole Exome sequencing quality for each independent patient (P1, P2, P3, P4, P5).

Whole Exome S	# of variants	
	Total	0
Nonsense	Homozygous	0
(stop-gained)	Heterozygous	0
Doodthrough	Total	0
(stop-lost)	Homozygous	0
	Heterozygous	0
Missense	Total	6
	Homozygous	1
	Heterozygous	6
	Total	1
Silent	Homozygous	0
	Heterozygous	1
	Total	23
Frameshift	Homozygous	7
	Heterozygous	16
	Total	112
UTR	Homozygous	3
	Heterozygous	109
	Total	3
Splice	Homozygous	0
	Heterozygous	3

Supplemental Table 5. Summary of reported GINS1 variants found in our in-house database of 3,000 exomes from patients without GINS1 deficiency.

P1 & P2	P3	P4	P5
PINX1	AK2,	SCNN1D	THAP3
CLDN9	SPATA6	SLC27A3	CROCC
	PSRC1,	IGSF9	RUNX3
	XPR1	POU2F1	PAFAH2
	AGT,	REN	PSRC1
	SIX2	MDM4	SMG7
	CCNT2,	OBSCN	GTDC1
	TTN	MTR	TTN
	CTDSPL,	EHD3	PECR
	DAG1	HOXD1	MROH2A
	RAD54L2	TTN	FANCD2
	EXOC1	ANKAR	SCN5A
	F13A1	SGPP2	WDR6
	CAPN11	SNED1	HTRA3
	HS3ST5	SLC6A11	OCIAD2
	CCR6	CDC20B	KIAA1211
	CREB5	SPINK14	CNOT6L
	CUX1	FAM26E	DCHS2
	NAPEPLD	GLI3	EXOC3
	TMEM168	ZAN	SNX18
	SHH	ERMP1	ARRDC3
	ST3GAL1	FAM208B	CDYL
	FRMD4A	SFMBT2	GSTA5
	LDB3	ITPRIP	HEBP2
	ANKRD1	CNTN5	TULP4
	ART5	POU6F1	TNRC18
	CDC42BPG	NUPL1	ZC3HAV1
	СІТ	ELMSAN1	CHRNA2
	CDH24	CHP1	ADAMTS13
	AHNAK2	ALPK3	PLXDC2
	CHTF18	IGF1R	MICALCL
	CACNA1H	MFSD6L	USH1C
	AMFR	KRTAP4-8	TNKS1BP1
	DHX38	ALDH3A1	HOXC8
	DPEP1	SLC38A10	STK24
	SHPK	USHBP1	KCNK10
	MYO15A	ZNF772	YY1
	RHOT1	PCK1	TMCO5A
	ZNF207	SLC19A1	ZACN
	TAC4	TNRC6B	EPG5
	RYR1	PNPLA3	SIPA1L3
	BCR	PHEX	ZNF805
	XIAP		DZANK1
	TMEM185A		SPO11
	BGN		APOBEC3F
	CR1		TSPAN7
	KLHL23		TM4SF2
			GPR112
			SMG7
			EIF2AK2
			CRAMP1L
			IGF1R

Supplemental Table 6. List of genes with rare, homozygous or compound heterozygous variants (MAF<1%), predicted to be damaging (CADD>MSC). The genes with at least one variant in the coding region are in bold.

Protein	CTL	P2	P3	P4	P5
GINS1	100%	43%	36%	53%	29%
GINS2	100%	129%	116%	127%	106%
GINS3	100%	19%	10%	27%	13%
GINS4	100%	69%	44%	88%	59%
MCM4	100%	128%	59%	124%	120%

Supplemental Table 7. Quantification of GINS complex components expression. Signals' intensities obtained on western blot analysis (Figure 3, C and D) were assessed by ImageJ software and normalized to GAPDH expression and to control expression (one experiment).

	NT					0.5 mM HU				2 mM HU					
Protein	CTL	P2	P3	P4	P5	CTL	P2	P3	P4	P5	CTL	P2	P3	P4	P5
P-CHK1 (%)	100	122	195	100	66	100	35	16	31	62	100	37	29	45	70
P-RPA (%)	100	20	73	37	39	100	28	35	38	91	100	64	71	88	80

Supplemental Table 8. Quantification of CHK1 and RPA phosphorylation. Signals' intensities obtained on western blot analysis (Figure 5C) were assessed by ImageJ software and normalized to GAPDH and expression control (one experiment).

Supplemental Figure 1. **Developmental growth**. Height and weight curves of all GINS1-deficient patients. The black line mean growth and the gray area indicates two standard deviations on either side of the mean.

Supplemental Figure 2. Classical immunophenotype of patients. (**A**) Total lymphocytes. (**B**) CD3⁺, CD4⁺, CD8⁺ T lymphocytes. (**C**) CD19⁺ B lymphocytes. (**D**). Immunoglobulins. The gray area corresponds to the range observed in controls.

Supplemental Figure 3. Lymphoid and myeloid cells subsets phenotype. Frozen PBMCs from healthy control subjects or patients. (**A**) Proportion of naïve (CD45RA⁺CCR7⁺) and memory (CD45RA⁻CCR7[±]) cells among CD4⁺ lymphocytes (left panel) and of naïve (CD45RA⁺CCR7⁺), central memory (cmem) (CD45RA⁻CCR7⁺), effector memory (emem) (CD45RA⁻CCR7⁻ and TEMRA (CD45RA⁺CCR7⁻) cells among CD8⁺ lymphocytes (right panel). (**B**) Percentage of V $\gamma\delta$ cells in total lymphocytes. (**C**) Quantification of CD4⁺ T-cell subsets, Treg cells (CD25⁺CD127^{lo}), T follicular helper (Tfh) cells (CD45RA⁻CXCR5⁺), Th1 cells (CD45RA⁻CXCR3⁺CCR6⁻), Th17 cells (CD45RA⁻CXCR3⁻CCR6⁺CXCR3⁻), Th2/ Th9 cells (CD45RA⁻CXCR3⁻CCR6⁻). (**D**) Percentage of transitional (CD10⁺), naïve (CD27⁻) , memory (CD27⁺) B cells. (**E**) Flow cytomety analysis of intracellular H₂O₂ production, using the fluorescent DHR123 probe in neutrophils from healthy controls (CTL), P2 and P2's parents (F: father, M: mother) stimulated by incubation with different concentrations of PMA for 10 minutes. The results shown are representative of two independent experiments. (**F**) Percentage of different myeloid cells, Left : CD14⁺ CD16⁻ cells, CD14⁺ CD16⁺ cells, CD14⁻ CD16⁺ cells, Right: PDCs (Lin⁻, CD303⁺), MDCs (Lin⁻, CD11c⁺), CD1c⁺ MDCs (CD1c⁺, CD11c⁺), CD141⁺ MDCs (CLEC9A⁺, CD141⁺) in controls (n=7) and patients (n=2).

Supplemental Figure 4. gDNA sequence and mRNA levels. (A) Sanger sequence of the gDNA, for all patients. The heterozygous profile of each mutation is shown for P1 to P5. (B) Representation of the frequency of missense variants in the ExAC database as a function of their impact, as predicted by CADD score. (C) GINS1 mRNA levels in E6/E7-fibroblasts from GINS1-deficient patients, as compared with control cells by q-PCR. (D) Sanger sequence of a *GINS1* cDNA with a deletion of part of the exon1 from P2 and P4, aligned with control sequences.

Supplemental Figure 5. Biochemical activities of WT and mutant CMG. **(A)** Soluble extracts (2 μl) prepared from Sf9 cells infected with CMG-expressing baculoviruses (including either WT or C152Y GINS1) were separated on 10% polyacrylamide gel electrophoresis. Expression of Mcm6, Cdc45, and GINS1 were detected by western blotting. **(B)** ATP hydrolysis activities were measured with increasing levels (15 and 40 fmol) of WT (lanes 2 and 3) and mutant (lanes 4 and 5) CMG complexes as described in materials and methods (top). The amount of hydrolyzed ATP was calculated and plotted against the level of CMG added (bottom). **(C)** DNA unwinding activities were measured with increasing levels (2.5, 5, 15, and 40 fmol) of WT (lanes 3-6) and mutant (lanes 7-10) CMG complexes as described in materials and methods (top). The structure of the DNA substrate and the unwound oligomer are illustrated on the right side of the gel. The amount of unwound substrate was calculated and plotted against the level of CMG added (bottom). B: boiled substrate.

Supplemental Figure 6. **Phosphorylation of CHK2**, assessed by western blot of total protein extracts from untreated or treated (incubation for 2 h with 80 μ g/ml of phleomycin) E6/E7-fibroblasts from controls and patients, with antibodies against P-CHK2 and CHK2. GAPDH was used as a loading control. (*n*=3)