Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews...
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • Allergy (Apr 2019)
    • Biology of familial cancer predisposition syndromes (Feb 2019)
    • Mitochondrial dysfunction in disease (Aug 2018)
    • Lipid mediators of disease (Jul 2018)
    • Cellular senescence in human disease (Apr 2018)
    • View all review series...
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Scientific Show Stoppers
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • About
  • Editors
  • Consulting Editors
  • For authors
  • Current issue
  • Past issues
  • By specialty
  • Subscribe
  • Alerts
  • Advertise
  • Contact
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • Brief Reports
  • Technical Advances
  • Commentaries
  • Editorials
  • Hindsight
  • Review series
  • Reviews
  • The Attending Physician
  • First Author Perspectives
  • Scientific Show Stoppers
  • Top read articles
  • Concise Communication
Cholic acid mediates negative feedback regulation of bile acid synthesis in mice
Jia Li-Hawkins, … , David W. Russell, Gosta Eggertsen
Jia Li-Hawkins, … , David W. Russell, Gosta Eggertsen
Published October 15, 2002
Citation Information: J Clin Invest. 2002;110(8):1191-1200. https://doi.org/10.1172/JCI16309.
View: Text | PDF
Categories: Article Metabolism

Cholic acid mediates negative feedback regulation of bile acid synthesis in mice

  • Text
  • PDF
Abstract

Research Article

Authors

Jia Li-Hawkins, Mats Gåfvels, Maria Olin, Erik G. Lund, Ulla Andersson, Gertrud Schuster, Ingemar Björkhem, David W. Russell, Gosta Eggertsen

×

Figure 1

Options: View larger image (or click on image) Download as PowerPoint
Deletion of mouse Cyp8b1. (a) Reaction catalyzed by CYP8B1, a microsomal...
Deletion of mouse Cyp8b1. (a) Reaction catalyzed by CYP8B1, a microsomal cytochrome P450. The enzyme is quite promiscuous with respect to sterol substrate and acts on several 7α-hydroxylated intermediates of the bile acid pathways, only one of which is depicted here. (b) Structures of normal Cyp8b1, the targeting vector used to replace the gene’s coding sequence with that of E. coli β-galactosidase (lacZ), and the expected mutant allele following homologous recombination in embryonic stem cells. The diagnostic positions at which the restriction enzyme EcoRI (E) cleaves the DNAs are indicated. Boxes indicate a herpes simplex virus thymidine kinase gene (HSVTK) and a DNA encoding neomycin/geneticin resistance (Neo). Long arrows above or below the boxes indicate the directions of transcription for lacZ and the neomycin resistance genes. The locations of genotyping primers I, II, and III are shown by short arrows above the gene schematics. (c) Poly(A)+ RNA was isolated from the livers of animals (n = 6) of the indicated Cyp8b1 genotype. Aliquots (15 μg) of total RNA were subjected to blot hybridization using radiolabeled probes derived from the coding region of Cyp8b1 and cyclophilin. The filter was exposed to x-ray film for 18 hours. The locations to which standards of known size migrated in the gel are indicated on the left of the autoradiogram.
Follow JCI:
Copyright © 2019 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts