Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews...
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • Allergy (Apr 2019)
    • Biology of familial cancer predisposition syndromes (Feb 2019)
    • Mitochondrial dysfunction in disease (Aug 2018)
    • Lipid mediators of disease (Jul 2018)
    • Cellular senescence in human disease (Apr 2018)
    • View all review series...
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Scientific Show Stoppers
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • About
  • Editors
  • Consulting Editors
  • For authors
  • Current issue
  • Past issues
  • By specialty
  • Subscribe
  • Alerts
  • Advertise
  • Contact
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • Brief Reports
  • Technical Advances
  • Commentaries
  • Editorials
  • Hindsight
  • Review series
  • Reviews
  • The Attending Physician
  • First Author Perspectives
  • Scientific Show Stoppers
  • Top read articles
  • Concise Communication
HOXA11 is critical for development and maintenance of uterosacral ligaments and deficient in pelvic prolapse
Kathleen A. Connell, … , Richard Bercik, Hugh S. Taylor
Kathleen A. Connell, … , Richard Bercik, Hugh S. Taylor
Published March 3, 2008; First published February 14, 2008
Citation Information: J Clin Invest. 2008;118(3):1050-1055. https://doi.org/10.1172/JCI34193.
View: Text | PDF
Categories: Research Article Reproductive biology

HOXA11 is critical for development and maintenance of uterosacral ligaments and deficient in pelvic prolapse

  • Text
  • PDF
Abstract

Pelvic organ prolapse (POP) is a common, debilitating disorder affecting millions of women. Uterosacral ligaments (USLs) are the main supportive structures of the uterus and vagina and are often attenuated in women with POP. Although the mechanical strength of USLs is known to be dependent on collagen synthesis and catabolism and the degradation protein MMP2 has been implicated in POP, the molecular mechanisms involved in the development of POP are currently unknown. Homeobox (HOX) genes are transcriptional regulators that orchestrate embryonic development of the urogenital tract. We demonstrated here that HOXA11 was essential for organogenesis of the USL by showing that USLs were absent in Hoxa11-null mice. We compared expression of HOXA11, collagen type I, collagen type III, MMP2, and MMP9 in USLs of women with and without POP. Expression of HOXA11 and both collagens was dramatically decreased while MMP2 was increased in women with POP. Constitutive expression of Hoxa11 in murine fibroblasts resulted in significantly increased expression of collagen type III and decreased expression of MMP2. These results identified HOXA11 as an essential gene for the development of the USL and suggested that women with POP might have weakened connective tissue due to changes in a signaling pathway involving HOXA11, collagen type III, and MMP2.

Authors

Kathleen A. Connell, Marsha K. Guess, Heidi Chen, Vaagn Andikyan, Richard Bercik, Hugh S. Taylor

×

Full Text PDF | Download (401.53 KB)

Follow JCI:
Copyright © 2019 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts