Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews...
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • Allergy (Apr 2019)
    • Biology of familial cancer predisposition syndromes (Feb 2019)
    • Mitochondrial dysfunction in disease (Aug 2018)
    • Lipid mediators of disease (Jul 2018)
    • Cellular senescence in human disease (Apr 2018)
    • View all review series...
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Scientific Show Stoppers
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • About
  • Editors
  • Consulting Editors
  • For authors
  • Current issue
  • Past issues
  • By specialty
  • Subscribe
  • Alerts
  • Advertise
  • Contact
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • Brief Reports
  • Technical Advances
  • Commentaries
  • Editorials
  • Hindsight
  • Review series
  • Reviews
  • The Attending Physician
  • First Author Perspectives
  • Scientific Show Stoppers
  • Top read articles
  • Concise Communication
Neuropilin-1 upregulation elicits adaptive resistance to oncogene-targeted therapies
Sabrina Rizzolio, … , Silvia Giordano, Luca Tamagnone
Sabrina Rizzolio, … , Silvia Giordano, Luca Tamagnone
Published August 31, 2018; First published June 28, 2018
Citation Information: J Clin Invest. 2018;128(9):3976-3990. https://doi.org/10.1172/JCI99257.
View: Text | PDF
Categories: Research Article Oncology Therapeutics

Neuropilin-1 upregulation elicits adaptive resistance to oncogene-targeted therapies

  • Text
  • PDF
Abstract

Cancer cell dependence on activated oncogenes is therapeutically targeted, but acquired resistance is virtually unavoidable. Here we show that the treatment of addicted melanoma cells with BRAF inhibitors, and of breast cancer cells with HER2-targeted drugs, led to an adaptive rise in neuropilin-1 (NRP1) expression, which is crucial for the onset of acquired resistance to therapy. Moreover, NRP1 levels dictated the efficacy of MET oncogene inhibitors in addicted stomach and lung carcinoma cells. Mechanistically, NRP1 induced a JNK-dependent signaling cascade leading to the upregulation of alternative effector kinases EGFR or IGF1R, which in turn sustained cancer cell growth and mediated acquired resistance to BRAF, HER2, or MET inhibitors. Notably, the combination with NRP1-interfering molecules improved the efficacy of oncogene-targeted drugs and prevented or even reversed the onset of resistance in cancer cells and tumor models. Our study provides the rationale for targeting the NRP1-dependent upregulation of tyrosine kinases, which are responsible for loss of responsiveness to oncogene-targeted therapies.

Authors

Sabrina Rizzolio, Gabriella Cagnoni, Chiara Battistini, Stefano Bonelli, Claudio Isella, Jo A. Van Ginderachter, René Bernards, Federica Di Nicolantonio, Silvia Giordano, Luca Tamagnone

×

Figure 3

NRP1 controls the therapeutic response to targeted therapy in MET oncogene–addicted cancer cells.

Options: View larger image (or click on image) Download as PowerPoint
NRP1 controls the therapeutic response to targeted therapy in MET oncoge...
(A) NRP1 expression was assessed by immunoblotting in GLT16 (gastric cancer), EBC1 (lung cancer), and H1993 (lung cancer) Met-addicted cells; β-actin provided a protein loading control (1 representative experiment of 2 repetitions). (B) The viability of the Met-addicted cells described in A was assessed by Cell Titer Glo Viability Assay upon NRP1 knockdown by RNA interference (n = 3). (C–H) The viability of GTL16 (C and D), EBC1 (E–G), and H1993 cells (H), either NRP1-depleted or mock-transfected (same cells as in B), was assessed in the presence of increasing concentrations of the Met inhibitors indicated below the graphs: JnJ-38877605 (JNJ-605), PHA-665752, or crizotinib (n > 5). IC50 values were calculated by Graphpad. (I and J) The growth of NRP1-depleted or mock-transfected GTL16 (I) and EBC1 (J) (same cells as in previous panels) was assessed by staining with crystal violet and reading Abs 595 nm after 2 weeks in culture in the presence of the indicated concentrations of the Met inhibitor JNJ-605 and normalized to untreated control cells condition (n = 3). In C–J, the statistical analysis was done by 2-way ANOVA with Bonferroni’s correction, comparing the behavior of NRP1-silenced and control cells.
Follow JCI:
Copyright © 2019 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts